There is something hidden underneath our physics which our explanations have
been unable to reach. As Neils Bohr said, "Anyone who

is not
shocked by quantum mechanics, hasn't understood it." If the electrons, or the photons, go one at a time through the double
slit

experiment, how do they know that both slits are open? It was
the astronomical observations of Galileo in Italy and

Tycho Brahe
in Denmark, and Galileo's experiments with pendulums and inclined planes, that sparked the development in Europe of what is

known as classical physics. Newton took over after Tycho, Galileo and Kepler, and
figured out how transformational causation works. Tycho

thought,
"Let's first find out where the planets are and then ask how they got there." Kepler inherited Tycho's careful observations
and

came up with three laws of planetary motion. With the help of
Kepler's laws and Galileo's studies in the effects of gravity and inertia,

Newton was able to figure out, in the main, how transformational causation works, and he wrote it up with plane geometry
so that anyone

could understand it, but he failed to notice that
there is something underneath, (and we had yet to put in thermodynamics and Maxwell's

famous equations).

Einstein, Bohr and Heisenberg took over after Newton, gave us relativity and quantum mechanics, and pointed
to something underneath.

As Einstein observed, "Something deeply
hidden had to be behind things." Richard Feynman who, in a sense, took over after Einstein, Bohr and

Heisenberg, and who helped to give us quantum electrodynamics, could take the consequences
of Newton's transformational causation for granted.

But he was fascinated
by the beauty of those things in our physics that could not be thus explained. Why does matter show gravity and inertia,

and why are the particles electrical? *Why* do we have the conservation laws?
*What is energy and why is it conserved?*

If Feynman's questions cannot be answered from within the field of play of our physics,
we will have to look for something hidden

underneath. There must
be some other form of causation underlying Newton's transformations. There must be something which gives rise to

gravity, electricity inertia and the conservation laws.

Euclid's geometry had to take several
things for granted which are known in the trade as axioms. Newton's laws of motion had to take

inertia for granted. General relativity had to take gravity for granted. Quantum electrodynamics had
to take electricity for granted. Perhaps

we have taken too much for
granted. Euclid failed to put time into the geometry. In 1905 Einstein put time into the geometry where it belongs,

but special relativity still takes space and time for granted. Maybe that is our mistake.
Heisenberg's uncertainty principle says that if

we can know where
something is in space, we cannot know its momentum, and that if we can know when something happens in time, we cannot know

the energy of the happening. The uncertainty is connected with seeing things in space
and time. Maybe that is our mistake.

What we see is changing in time, and finite and divided in space. So if something underlies it. and it
seems that something must, it must

be changeless beyond time, and
infinite and undivided beyond space. And the question is: could such an underlying existence show through in our

physics in such a way as to allow an explanation for those parts of our physics which
heretofor we have had to take for granted?

Late in the last century, Swami Vivekananda had suggested that the universe is an
underlying existence, which he referred to as the

Absolute, seen
through the screen of time, space and causation. In the winter of 1895-96, he met Nikola Tesla at Sarah Bernhardt's party
in

New York and asked him if he could show that what we call matter
could be just potential energy. Tesla apparently did not get it shown, But

Mileva Einstein, Einstein's first wife, was a close friend of Tesla's, and she probably brought the problem over
to Einstein where ji t shows

up in the appendix to his relativity
paper in 1905 as E = mc'. That is what Swami Vivekananda had asked Tesla to show. The c 2 in Einstein's

equation is just to clear up the units. When we found out that mass and energy are the same thing, we
had to know how many ergs make a gram.

Einstein referred to that
equation as "the equation in which energy is set equal to mass." By 1905 Einstein had the needed information in
hand.

He knew from his paper on photoelectric effect that the energy
of a receeding particle is lowered by the redshifting of its spectral lines.

He knew from his relativity paper that the mass of a receding particle is also lowered. He had only to put the two
together to get E = m which

Swami Vivekananda had asked Tesla to
show ten years earlier.

So mass, as a separate entity, dropped out of our physics in 1905 and the term has gradually been replaced
with the term rest energy.

But that leaves us with Feynman's question:
what is this energy and why is it conserved? Because energy cannot arise within the field of play

of our physics. It cannot arise by transformational causation.

Now since energy cannot arise within the domain of
our current physics, it might indeed be Swami Vivekananda's underlying existence

seen through the screen of time and space and showing as changeless through the changes in time. If so, we have for
the

first time, an explanation of both the conservation of energy
and its inertia. And if gravitational energy is that underlying

existence
showing as undivided through the dispersion of the particles in space, and if the electrical energy is that same existence

showing as infinite through the smallness of the particles, we have
an explanation for both gravity and electricity. But how about

the
energy of radiation which is unassociated with mass?

In 1905 Einstein put time into the geometry where it belongs, and time and space come
into that geometry as a pair of opposites so that

the total separation
between the emission and absorption events of a single photon goes to zero. The space separation between those two

events comes into Pythagorus' equation squared with a plus sign, and the time separation
comes in squared with a minus sign. And since, for

photons, the two
are equal, the total goes to zero. We see events away from us in space by the trick of seeing them back in time. In 1905

when Einstein threw out the luminiferous ether, he should have thrown out the photons
as well.

When
the photons appear to go one at a time through the double slit experiment, the emission and absorption events of each photon
are

adjacent in space-time. This adjacentcy has a space component
and a time component, and it is the space component of the adjacentcy that goes

through both slits, not the photon.

All this is old physics. All I am suggesting is that we are seeing the changeless,the
infinite, the undivided through the screen of time

and space, and
that the transformational causation of our physics is a consequence of this. The rest is old physics. And this is not metaphysics.

Anything relating to the existence or behavior of what we see as matter is within
the domain of physics.

If energy is indeed the underlying existence showing as changeless through the change in time, its conservation
and its inertia

follow as a matter of course. But how about the conservation
of momentum? Since time has its opposite in space, and since momentum is the

space component of energy, we might expect the conservation of momentum also to follow as a matter of course. But
the universe is not made out

of momentum. The universe is made out
of energy; it is not made out of anything else. So the conservation of momentum, both linear and angular,

like the conservation of electrical charge, is based on pairs of opposites where the
total goes to zero. That way they represent zero

change in the changeless.

If it can be shown
that the universe has an overall momentum, or angular momentum, or an overall electrical charge, I will have to throw

in my sponge. And if, as I see it, the protons and electrons arise by apparition,
they should not decay by transformation within it. If it

can be shown
that the protons do decay, I may have to throw in my sponge.

If the universe is Swami Vivekananda's Absolute seen through the screen of time, space
and causation, there need be no talk of origins.

Rather we need to
know what would be the consequences. That is Heisenberg's uncertainty principle. It says that if you see what you see in

time and space, these will be the consequences. Quantum mechanics is the consequences
of seeing what we see through the screen of time and

space.

Bell's theorem states
that if matter behaves according to our quantum mechanical understanding of how it should behave, and we know

now that it does, then one of two things has to fail. Either local causation fails
or objectivity fails. In a sense, objectivity failed

in 1905 when
the separation between the perceiver and the perceived was seen to go to zero. And, in a sense, local causation fails if angular

momentum, like electric aharge, must always have its opposite. Our inertial guidance
systems keep track of a direction through the universe

at large because
the other half of their angular momentum is in the universe at large and the total must go to zero.

John L. Dobson

October 1996